
LRUG June 2020

Hanami

A(nother) Rack-based
Opinionated Framework

Panos Matsinopoulos
Senior Software Engineer @ Lavanda

LRUG June 2020
Source: https://en.wikipedia.org/wiki/Hanami

https://en.wikipedia.org/wiki/Hanami

LRUG June 2020

Quick introduction to Lavanda
Lavanda is a technology platform powering the convergence of residential real estate, hospitality

and travel.

Our SaaS toolkit aims to shape the future of:

● multifamily / build-to-rent (BTR)

● serviced apartments

● student housing

● vacation rentals

LRUG June 2020

Quick introduction to my team
We are 11 s/w engineers in the Lavanda Product team, including:

● 8 Rubyists (some more full-stack than others :))

● 3 dedicated frontend experts, using Angular/React/Typescript

And…

...unfortunately, we’re not hiring at the moment! :-)

That’s not what brought us here today!

LRUG June 2020

vs

LRUG June 2020

Default Project
Folder Structure

LRUG June 2020

Controllers
● Classes that expose a single public

method named call.
● Each class implements an action.
● Otherwise, we have a lot of similarities.

Like for example the before and after
action hooks.

● In Rails we have one controller class
implementing multiple actions

C

LRUG June 2020

Views vs Templates
● Views: Rails has *.erb files that are the

HTML content to be returned.
● One per controller action.
● Combined with layout *.erb files

● Templates. Again *.erb files.
● One per controller action.
● And you can combine with layout

templates.
● Views, which are classes preparing data

for the templates. One per action.

VC VTC

LRUG June 2020

Views vs Templates Folders

LRUG June 2020

Models vs Entities
● Models deriving from

ActiveRecord::Base
● Feature/Functional heavy classes

● Entities deriving from Hanami::Entity
● Light weight classes
● By default they have an id and you can

read the value of its properties. But you
can’t change their values.

MVC EVTC

LRUG June 2020

Models vs Entities Folders

LRUG June 2020

Entities
● Derive from Hanami::Entity
● They have an id.
● And they are read-only.
● They are updated via Repositories.

LRUG June 2020

ActiveRecord vs Repository Pattern
[ActiveRecord] An object that wraps a
row in a database table or view,
encapsulates the database access, and
adds domain logic on that data. (Martin
Fowler)

[A Repository] mediates between the
domain and data mapping layers using
a collection-like interface for accessing
domain objects (Martin Fowler)

https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://martinfowler.com/eaaCatalog/repository.html

LRUG June 2020

Update or Delete an Entity
● BookingRepository.new.update(id, data)
● BookingRepository.new.delete(id)

LRUG June 2020

Likes vs Doesn’t Like
● Hanami doesn’t like this:

○ Book.where(author_id: 23).order(:published_at).limit(8)

● But, it likes this:
○ BookRepository.new.most_recent_by_author(author, limit: 8)

LRUG June 2020

Example Repositories folder

LRUG June 2020

Repository: What’s inside

LRUG June 2020

Validations

LRUG June 2020

Global Custom Validation Predicates

LRUG June 2020

Using Global Predicates vs Inline Ones

LRUG June 2020

Invoking Hanami Validations

LRUG June 2020

Associations (Rails vs Hanami)

LRUG June 2020

Interactor (optional but useful)
● More like a Service object
● Initialize and call
● Can use validations
● They are Hanami-application independent

○ They live in the lib folder tree and not in any application-specific one.

LRUG June 2020

Interactors Live in lib Folder

LRUG June 2020

Interactor Example

LRUG June 2020

Lavanda Hanami Preferred Architecture

Controllers

Interactors

Validations Repositories Interactors

LRUG June 2020

Lavanda PR to Hanami Validations (1/8)

LRUG June 2020

Lavanda PR to Hanami Validations (2/8)

Why not?

LRUG June 2020

Lavanda PR to Hanami Validations (3/8)
● It seems that you can’t use both.

○ Module definition eliminates inline predicate definition

● Let’s create a PR
○ Find the repo: https://github.com/hanami/validations

○ Find the specs: spec/unit/hanami/validations/predicates/schema/custom_spec.rb
○ Amend the existing specs.
○ Change the library to comply with new specs.
○ Issue the PR.

https://github.com/hanami/validations

LRUG June 2020

Lavanda PR to Hanami Validations (4/8)

LRUG June 2020

Lavanda PR to Hanami Validations (5/8)

LRUG June 2020

Lavanda PR to Hanami Validations (6/8)

LRUG June 2020

Lavanda PR to Hanami Validations (7/8)

LRUG June 2020

Lavanda PR to Hanami Validations (8/8)

https://github.com/hanami/validations/pull/196

(*) Unfortunately, currently failing due to some misconfiguration
on their CI in relation to the rubocop requirements

https://github.com/hanami/validations/pull/196

LRUG June 2020

Websockets Support In Hanami
● Rails has Action Cable.
● Hanami does not offer websockets support out of the box.
● However, we have integrated AnyCable with the help of the gem

litecable.

https://anycable.io/

LRUG June 2020

Hanami and GraphQL APIs
● Using graphql gem

LRUG June 2020

Breaking Monolith
● Server-to-Server using api-auth.
● Database-level integration using

Background Tasks.
○ Extremely performant
○ Drawback:

■ one server knows the queue name, the
class name and perform arguments
implemented in the other

○ Like an async remote method invocation

Redis

Sidekiq::Client.push(
 'class' => '<class name of remote worker>',
 'args' => [<args of perform>],
 'queue' => '<queue-name>',
 'retry' => false
)

LRUG June 2020

Overall Level of Satisfaction
● We are very satisfied
● Ideal for implementing microservices
● Favors small classes
● It protects you from some common engineering errors
● We would go again with Hanami or
● We would go with Rails, but apply Hanami principles

LRUG June 2020

Questions and Answers

LRUG June 2020

Thank you!

