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Quick introduction to Lavanda 
Lavanda is a technology platform powering the convergence of residential real estate, hospitality 

and travel.

Our SaaS toolkit aims to shape the future of:

● multifamily / build-to-rent (BTR)

● serviced apartments

● student housing

● vacation rentals



LRUG June 2020

Quick introduction to my team 
We are 11 s/w engineers in the Lavanda Product team, including:

● 8 Rubyists (some more full-stack than others :) )

● 3 dedicated frontend experts, using Angular/React/Typescript

And…

...unfortunately, we’re not hiring at the moment! :-)  

That’s not what brought us here today!
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vs
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Default Project 
Folder Structure
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Controllers
● Classes that expose a single public 

method named call.
● Each class implements an action.
● Otherwise, we have a lot of similarities. 

Like for example the before and after 
action hooks.

● In Rails we have one controller class 
implementing multiple actions

C
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Views vs Templates
● Views: Rails has *.erb files that are the 

HTML content to be returned.
● One per controller action.
● Combined with layout *.erb files

● Templates. Again *.erb files.
● One per controller action.
● And you can combine with layout 

templates.
● Views, which are classes preparing data 

for the templates. One per action.

VC VTC



LRUG June 2020

Views vs Templates Folders
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Models vs Entities
● Models deriving from 

ActiveRecord::Base
● Feature/Functional heavy classes

● Entities deriving from Hanami::Entity
● Light weight classes
● By default they have an id and you can 

read the value of its properties. But you 
can’t change their values.

MVC EVTC
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Models vs Entities Folders
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Entities
● Derive from Hanami::Entity
● They have an id.
● And they are read-only.
● They are updated via Repositories.
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ActiveRecord vs Repository Pattern
[ActiveRecord] An object that wraps a 
row in a database table or view, 
encapsulates the database access, and 
adds domain logic on that data. (Martin 
Fowler)

[A Repository] mediates between the 
domain and data mapping layers using 
a collection-like interface for accessing 
domain objects (Martin Fowler) 

https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://www.martinfowler.com/eaaCatalog/activeRecord.html
https://martinfowler.com/eaaCatalog/repository.html
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Update or Delete an Entity
● BookingRepository.new.update(id, data)
● BookingRepository.new.delete(id)
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Likes vs Doesn’t Like
● Hanami doesn’t like this:

○ Book.where(author_id: 23).order(:published_at).limit(8)

● But, it likes this:
○ BookRepository.new.most_recent_by_author(author, limit: 8)
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Example Repositories folder
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Repository: What’s inside
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Validations
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Global Custom Validation Predicates
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Using Global Predicates vs Inline Ones
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Invoking Hanami Validations
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Associations (Rails vs Hanami)
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Interactor (optional but useful)
● More like a Service object
● Initialize and call
● Can use validations
● They are Hanami-application independent

○ They live in the lib folder tree and not in any application-specific one.
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Interactors Live in lib Folder
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Interactor Example
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Lavanda Hanami Preferred Architecture

Controllers

Interactors

Validations Repositories Interactors
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Lavanda PR to Hanami Validations (1/8)
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Lavanda PR to Hanami Validations (2/8)

Why not?
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Lavanda PR to Hanami Validations (3/8)
● It seems that you can’t use both.

○ Module definition eliminates inline predicate definition

● Let’s create a PR
○ Find the repo: https://github.com/hanami/validations

○ Find the specs: spec/unit/hanami/validations/predicates/schema/custom_spec.rb
○ Amend the existing specs.
○ Change the library to comply with new specs.
○ Issue the PR.

https://github.com/hanami/validations
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Lavanda PR to Hanami Validations (4/8)
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Lavanda PR to Hanami Validations (5/8)
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Lavanda PR to Hanami Validations (6/8)
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Lavanda PR to Hanami Validations (7/8)
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Lavanda PR to Hanami Validations (8/8)

https://github.com/hanami/validations/pull/196

(*) Unfortunately, currently failing due to some misconfiguration 
on their CI in relation to the rubocop requirements

https://github.com/hanami/validations/pull/196
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Websockets Support In Hanami
● Rails has Action Cable.
● Hanami does not offer websockets support out of the box.
● However, we have integrated AnyCable with the help of the gem 

litecable.

https://anycable.io/
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Hanami and GraphQL APIs
● Using graphql gem
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Breaking Monolith
● Server-to-Server using api-auth.
● Database-level integration using 

Background Tasks.
○ Extremely performant
○ Drawback:

■ one server knows the queue name, the 
class name and perform arguments 
implemented in the other

○ Like an async remote method invocation

Redis

Sidekiq::Client.push(
 'class' =>   '<class name of remote worker>',
 'args' => [<args of perform>],
 'queue' => '<queue-name>',
 'retry' => false
)
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Overall Level of Satisfaction
● We are very satisfied
● Ideal for implementing microservices
● Favors small classes
● It protects you from some common engineering errors
● We would go again with Hanami or
● We would go with Rails, but apply Hanami principles
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Questions and Answers
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Thank you!


